
C A L C U L A T I O N  O F  T H E  P R I N C I P A L  P A R A M E T E R S  

O F  F R E E  S U P E R S O N I C  J E T S  OF AN I D E A L  

C O M P R E S S I B L E  F L U I D  

V.  G.  D u l o v  a n d  G. I .  S m i r n o v a  

An approximate method of determining the principal pa ramete r s  of axially symmet r ica l  under -  
expanded jets is set out. The resul ts  are presented in the form of computing formulas for 
the geometr ica l  charac te r i s t i c s  of the configuration of the shock waves and the boundaries 
of the jet .  On the basis of experience with these calculations, some simple approximating 
relationships are recommended.  

Notation: x,y, rectangular  coordinates in the plane of the axial section; p, p ressure ;  p, density; w, 
modulus of the velocity; M, Mach number; k, polytropy index; n, degree of wastage of the jet; ~, Mach 
angle; ,9, angle between the velocity vector  and the symmet ry  axis; ~a ,  aperture semiangle of the nozzle in 
the outlet section; 0, angle of rotation of the flow in the shock wave; q~, inclination of the leading edge of 
the shock wave to the symmet ry  axis; w, angle between the incident jump and the velocity vector  of the in- 
cident flow; K, curvature  of the cur ren t  l ines; R, radius of curvature .  

The indices denote: a ,  pa ramete r s  in the outlet section of the nozzle; ~ pa ramete r s  at the boundary 
of the jet; *, pa ramete r s  in front of the shock-wave branch point; 1, pa ramete r s  at the vertex of the angle 
between the leading edges of the branched jumps; 2, pa ramete r s  behind the central  jump. The dimension-  
less  gas-dynamic  quantities are r e fe r r ed  to the corresponding retardat ion paramete r s  at the outlet from 
the nozzle, the quantities with dimensions of velocity to the maximum velocity of s teady-s ta te  outflow into 
a vacuum. The l inear quantities are expressed in t e rms  of the radius of the outlet c ross  section of the 
nozzle. 

1. Numerical  calculations of the shape of the boundaries in supersonic jets of a nonviscous, nonheat- 
conducting gas are laborious and cumbersome.  Simple approximate methods of solving this problem are 
therefore  very much  to be sought. One such method was proposed in [1]; it was based on expanding the 
solution in ser ies  with respect  to even powers of the angle ~ .  The expansion is achieved by t ransforming 
to an auxiliary plane of independent variables (p ressu re -cur ren t  function) [2]. The initial approximation 
then gives a unidirnensional solution for flows in a channel with a variable c ross - sec t iona l  area.  In the 
next approximation, the i sobars  (including the isobaric  current  line) form a family of second-order  curves .  
However, since the flow closely resembles  a plane flow around an obstacle in the neighborhood of the sharp 
edge [3] (up to distances of the order  of the radius of the nozzle from the center  of expansion), the genera tor  
of the jet boundary differs little f rom a straight  line up to distances of the same order .  We may therefore  
employ a twofold analytical specification for the shape of the boundary genera tor  in different regions 

~'i + (tg t%~ x, x ~ x  ~ 
y= [I/-AT-g-~ Tcx~, x>xO i t . l )  

where A, B, C, x ~ ~0 are pa ramete r s  reflecting the influence of the specific conditions of outflow and the 
internal s t ructure  of the jet .  T]~e pa ramete r s  A, D, C, and x ~ were defined in [1] in t e rms  of the coordinates 
x ,  ,y ,  of the branch point of the shock waves and the p ressu re  Pl at the tip of the angle between the incident 
and reflected jumps.  The following conditions and assumptions also apply: 
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a) s m o o t h  jo in ing  of the  s e c t i o n s  of the  j e t  b o u n d a r y  g e n -  
e r a t o r  i s  a s s u m e d  at the  point  (x~ ~ 

y~ = I + x ~ 1 7 6  = ] / A - ~  B x  ~ + C x  ~ 

dy  _ t g  ~~  - -  B -[- 2Cx  ~ 
dx  2y ~ 

b) the ac t ive  c r o s s  s e c t i o n  of the f low p a s s i n g  t h r o u g h  the  
c o n t o u r  of  the  c e n t r a l  j u m p  i s  r e g a r d e d  as  a p p r o x i m a t e l y  p lane  
and n o r m a l  to the  s y m m e t r y  ax i s ;  s i n c e  th i s  s e c t i o n  l i e s  f a i r l y  
c l o s e  to  the  m a x i m a l  c r o s s  s e c t i o n ,  the  d i r e c t i o n  of the  v e l o c i t y  
v e c t o r  in the f o r m e r  d i f f e r s  l i t t l e  f r o m  ax ia l ,  and the  angle  ~ i s  
t h e r e f o r e  r e g a r d e d  as  s m a l l  wi th in  th i s  s e c t i o n ;  

c) a l lowing  for  the  f o r e g o i n g  a p p r o x i m a t i o n ,  an i n t e g r a l  
f o r m  i s  t aken  fo r  the  law of  c o n s e r v a t i o n  g o v e r n i n g  the  m a s s  of 
the g a s ;  

d) i t  i s  c o n s i d e r e d  tha t  the c u r v a t u r e  of the  c u r r e n t  l i n e s  K 
a n d  the g r a d i e n t s  of the  p r e s s u r e  p r e m a i n  f in i te  wi th in  the  r e g i o n  
of f low c o n s i d e r e d  and cons t i t u t e  r e a s o n a b l y  s m o o t h  func t ions  of  
d i s t a n c e  f r o m  the b o u n d a r y  of the  j e t ;  

e) in the  c a l c u l a t i o n s ,  t h e s e  func t ions  a r e  a p p r o x i m a t e d  by 
a q u a d r a t i c  r e l a t i o n s h i p  fo r  p and a l i n e a r  r e l a t i o n s h i p  f o r  K .  

In th i s  way  we obta in  an equa t ion  in x ~ and f o r m u l a s  f o r  the  c o e f f i c i e n t s  A, B, and C 

kM~176176 (Pl [ P~ - -  1) J1 Y m 2 - - 2 ( x . - - x ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  - - ( x . - - x ~  2 [ t g 2 # ~  = 0  (1.2) 

A = y , ~  - -  B x ,  - -  C x ,  2 = (t + x ~ tg 0'~ 2 - -  B x  ~ - -  C x  ~ 

B = 2 [(1 ~- x ~  ~ tgff ~ - -  C x  ~ 

C = (x, - -  x~ -2 [y, 2 __ 2 (x, - -  x ~ (l -~ x ~ tg ~~ tg ~~ - -  (1 -~ x ~ tg ~)3] 

w h e r e  

6D( 2 ,)}I } 
1 l k~-I  _ 

D = -~-  pa  r ( ~ / 1  - -  pta~ - -  t )  -]- T Pa - -  

F i g u r e  1 i l l u s t r a t e s  v a r i o u s  c o m p a r i s o n s  be tween  the c a l c u l a t i o n  of the b o u n d a r y  g e n e r a t o r  b a s e d  on 
Eqs .  (1.1) and (1.2) (broken l ines )  and the c a l c u l a t i o n  b a s e d  on the m e t h o d  of c h a r a c t e r i s t i c s  [3] (cont inuous 
l ine ) .  In th i s  we t o o k k = l . 4 ,  M a = 1 . 5 , ~ a  =0"  

Ana logous  r e s u l t s  w e r e  ob ta ined  for  o the r  v a l u e s  of the  o r i g i n a l  p a r a m e t e r s  (1 -< M a -< 3.5, 5 -< n _< 
25). 

2. In an u n d e r e x p a n d e d  j e t ,  the  f i r s t  shock  wave ,  o r  the  s u s p e n d e d  j u m p  (curve  2 in F i g .  2), i s  g e n -  
e r a t e d  at  a c e r t a i n  d i s t a n c e  f r o m  the  nozz l e  cutoff ,  at  the  po in t  O1, at  which  the  c h a r a c t e r i s t i c s  of the 
s e c o n d  f a m i l y  3 r e f l e c t e d  f r o m  the  b o u n d a r y  of the j e t  1 f i r s t  i n t e r s e c t .  The  c o o r d i n a t e s  of th is  poin t  m a y  
e a s i l y  be e x p r e s s e d  in  t e r m s  of the r a d i u s  of c u r v a t u r e  R ~ of the  i n i t i a l  e l e m e n t  of the  j e t  b o u n d a r y  on the  
a s s u m p t i o n  tha t  the  c h a r a c t e r i s t i c s  a r e  p r a c t i c a l l y  l i n e a r  up to  the  i n t e r s e c t i o n  po in t .  

A s i m p l e  a p p r o x i m a t e  f o r m u l a  m a y  be ob t a ined  fo r  R ~ f r o m  the equa t ion  of m o t i o n  p r o j e c t e d  on the 
n o r m a l  to  the  c u r r e n t  l i ne ,  a l lowing  fo r  the  con t inu i ty  equa t ion  
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pw~ Op O0 i Opw s in  ~) 

H e r e  R i s  the  l o c a l  r a d i u s  of c u r v a t u r e ,  and s and n a r e  the  d i s t a n c e s  a long  the  c u r r e n t  l i ne  and the  
n o r m a l  to  the  l a t t e r .  Since  pw = cons t  a long the b o u n d a r y ,  f r o m  the fo rego ing  equa t ions  we obta in  

pw ~ sin ~ Op 
R y 0~ 

The d e r i v a t i v e  d p / d ~  i s  c a l c u l a t e d  a long the n o r m a l  to the  b o u n d a r y .  The  change  in p r e s s u r e  in the  
e l e m e n t a r y  c o m p r e s s i o n  wave  r e f l e c t e d  f r o m  the b o u n d a r y  m a y  be a p p r o x i m a t e l y  c a l c u l a t e d  f r o m  the p lane  
t h e o r y  of s m a l l  p e r t u r b a t i o n s .  The  f low in the  ne ighbo rhood  of the  b o u n d a r y  i s  v o r t e x - f r e e ;  hence ,  

pw~ d~ 
d p . . ~  V-i--v~-- t 

T h u s ,  

Ro = VM 2 - 1  : ctga.___~ ~ 
s in  ~~  s in  ~~ 

H e r e  a ~ i s  the  Mach  ang le ,  and ~ ~ i s  the  i n i t i a l  i n c l i n a t i o n  of  the  b o u n d a r y  g e n e r a t o r  to  the  ax i s  of  the 
j e t .  The  a p p r o x i m a t e  f o r m u l a  (2.1) g i v e s  e n t i r e l y  s a t i s f a c t o r y  a g r e e m e n t  wi th  the  r e s u l t s  of e x a c t  c a l c u l a -  
t ions  [3]. A c c o r d i n g  to Eq.  (2.1) and F i g .  2, the c o o r d i n a t e s  of the  po in t  of g e n e r a t i o n  of the  s u s p e n d e d  j u m p  
a r e  g iven  by  

COS O~ ~ 
Xo = ~ cos (#~ - ~~ COS Ct ~ . 

y o  = I + ~ s m  0 ~ - -  a~ 

In  the  n e i g h b o r h o o d  of the  t r i p l e  poin t ,  the  p a r a m e t e r s  a r e  v e r y  s e n s i t i v e  to any change  in the i n i t i a l  
i n c l i n a t i o n  of the  s u s p e n d e d  j u m p  to the ax i s  of the j e t  ~p~ The a r c  of the  s u s p e n d e d  j u m p  i s  of a c o n s i d e r -  
ab le  ex ten t ;  hence  even s m a l l  e r r o r s  in d e t e r m i n i n g  the  angle  q~ m a y  g ive  r i s e  to  s e r i o u s  e r r o r s  at the  end 
of t h i s  a r c .  Le t  us  c a l c u l a t e  the  i n c r e m e n t  in  the  c h a r a c t e r i s t i c  angle  (J - (~) on m o v i n g  along the l a t t e r  
c h a r a c t e r i s t i c ,  d e s c e n d i n g  f r o m  the s h a r p  edge  of the n o z z l e .  In  the n e i g h b o r h o o d  of th i s  edge ,  the d e r i v a -  
t i v e s  of  the  g a s - d y n a m i c  quan t i t i e s  m e a s u r e d  a long the  c h a r a c t e r i s t i c s  of the  f i r s t  f a m i l y  in the r e g i o n  of 
the  wave  of r a r e f a c t i o n  a r e ,  in  abso lu t e  m a g n i t u d e ,  f a r  g r e a t e r  than  the s a m e  quan t i t i e s  in the  d i r e c t i o n  of 
the  c h a r a c t e r i s t i c s  of the  s e c o n d  f a m i l y .  Hence  the c o m p a t i b i l i t y  r e l a t i o n s h i p  a long the  c h a r a c t e r i s t i c s  of 
the  f i r s t  f a m i l y  is  a p p r o x i m a t e l y  s a t i s f i e d  in a l l  d i r e c t i o n s ,  in the  s a m e  f o r m  as  in the c a s e  of p lane  f lows 

COS s Cg 

d ~  -~- 1[ 2 (k - -  i ) - ~  s in  2 a do: = 0 ( 2 . 2 )  

Thi s  r e l a t i o n s h i p  ho ld s ,  in p a r t i c u l a r ,  a long the i n i t i a l  e l e m e n t  of the  b o u n d a r y  c h a r a c t e r i s t i c ,  on 
which  the e x a c t  r e l a t i o n s h i p  fo r  the c h a r a c t e r i s t i c s  of the  s e c o n d  f a m i l y  i s  s a t i s f i e d  

d~ - -  cos'~ 
1[~ (k --  l) + sin~ a da  - -  sin a sin ~3 dl = 0 (2.3) 

H e r e  d l  i s  an e l e m e n t  of d i s p l a c e m e n t  along the c h a r a c t e r i s t i c  in ques t ion .  I t  fo l lows  f r o m  (2.2) and 
(2.3) tha t  

d (~  - -  a) __ k + ~. s in  a s in  
dl 4 c o s  2 a 

The l a t t e r  f o r m u l a  e n a b l e s  us  to i n t r o d u c e  a l i n e a r  c o r r e c t i o n  to  the  angle  

~~ = 9 ~ - -  a ~ -b - -  4 

C a l c u l a t i o n s  showed  tha t  due a l l owance  fo r  th i s  c o r r e c t i o n  c o n s t i t u t e d  one of the m a i n  r e q u i r e m e n t s  
in i n c r e a s i n g  the a c c u r a c y  of d e t e r m i n a t i o n  of the  p a r a m e t e r s  g o v e r n i n g  the  c o n f i g u r a t i o n  of  the shock  
w a v e s  in the  j e t .  

3. If ,  fo r  the  s ake  of c l a r i t y ,  the  b o u n d a r y  of the  j e t  i s  l i k e n e d  to a s o l i d  wal l ,  then  the  s u s p e n d e d  
j u m p  m a y  be t r e a t e d  as  a shock  wave  a r i s i n g  when a s u p e r s o n i c  flow p a s s e s  a r o u n d  a c o n c a v e  s u r f a c e .  The  
g r e a t e r  the  Mach  n u m b e r  in  the  " inc iden t "  flow, the  m o r e  c l o s e l y  does  th i s  wave  a p p r o a c h  the  s u r f a c e  a round  
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which the flow is occurr ing.  On this basis,  cer ta in  authors have used the 
limiting hypersonic approximation, assuming that the suspended jump co-  
incides with the boundary of the jet.  For  large but finite Mach numbers 
in front of the suspended jump, the genera tor  of the la t ter  differs little in 
shape f rom the line forming the boundary, and may  be geometr ica l ly  de-  
r ived f rom this by means of a relat ively slight deformation.  This de-  
formation may be approximately ca r r i ed  out analytically by changing 
several  pa ramete r s  in the s t ructura l  relationship defining the shape of 
the jet boundary. 

Let us suppose that the arc  of the boundary genera tor  is given by 
the equation of a t h r ee -pa rame te r  curve of form 

](x, y, a, b, c ) =  0 (3.1) 

where a ,  b, c are pa ramete r s  determined f rom the conditions cha rac t e r -  
izing the jet boundary. Then, according to the foregoing arguments,  the 
equation of the genera tor  giving the surface of the leading edge of the sus -  
pended jump takes the same form (3.1), while the pa ramete r s  a ,  b, c may 
be found with due allowance for the proper t ies  of this jump, i . e . ,  the curve 
in question should pass through two points with coordinates (x0,Y0) and 
(x, , y , ) ;  the inclinations of the jump to the symmet ry  axis at these points, 
respect ively,  equal q~ and go,. Hence, 

](x0, Yo, a, b, c) = O, ](x,, y , ,  a, b, c) = 0 
/x(xo, Yo, a, b, c) --/y(Xo, Y0, a, b, c) tg (~~ = 0 

fx(x,, y,  a, b, c) +/~(x,, y,  a, b, c) tg ~, = 0  
(3.2) 

In accordance with (1.1) we may, in par t icular ,  consider  that 

/ (x ,  y, a, b, c ) =  y - -  ]/ a + b x  + cx2-=O 

F r o m  Eqs. (3.2) we then find 
a = ~7/o2 - -  bxo  - -  CXo 2 ~ y , 2  __ b x ,  - -  cx , ,  2 

b = (x,--  x0):l[y, ~ -- y2o + (x0 + x,) (Yo tg(p ~ @ y, vg qD,)] 

c = -- (x, --x0)-~(Yo tg (p~ + y ,  tg (p,) 
tg ~0, = [y, (z, -- xo)1-1 [(x, -- xo)Yo tg (~o __ y,~ + y02] 

(3.3) 

Equations (3.3) contain the unknown paramete r s  x ,  and y , .  We shall now discuss the problem of ca l -  
culating these.  

4. In a jet  flow there is always a tendency for the flow to even out in the direct ion of the jet axis. 
Even behind the f i rs t  sys tem of jumps, the inclinations of the velocity vectors  to the axis of the jet become 
very  slight. This proper ty  also applies to the contact discontinuity descending from the contour of the cen-  
t ra l  jump. To a f i rs t  approximation this jump may be considered as the f i rs t  jump of compress ion .  Then 
the initial inclination of the contact discontinuity equals zero,  while the flow may be regarded as unidimen- 
sional in front of the leading edge of the jump. 

As a second approximation we set up the following scheme (Fig. 3). The velocity vec tor  w in front of 
the triple point C makes a small  angle e with the symmet ry  axis; the angle of the incident jump 1 with r e -  
spect to this vector  changes by a small  amount Aw; the central  jump 3 curves ,  while the initial element of 
the contact discontinuity remains  parallel  to the axis. Hence, in the second approximation, e - 01 + 02 = 0, 
where 01 and 02 are the angles of rotation of the flow in the incident and ref lected jumps 1 and 2, r espec t ive -  
ly. 

Let us make use of the formula for the angle of rotation of the flux in the shock wave 

~ - -  ~ [ 2k M 2 ] % =  p1 
t g 0  - -  i ~ _  k M e _  ~ k-~ i ~ + ( k _ l ) / ( ~ + t ) - - t  P(M,~ ) ,  V = ~ p ,  (4.1) 
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Here Pl is the p ressu re  at the tip of the angle between the leading edges of the branched jumps 1 and 
2, p .  is the p res su re  in front of the branch point. Let 00 and a0 be the values of 0 and ~ in the f irst  ap- 
proximation.  We introduce the function y in the following form: 

 =[cos 0o( 
tg Oo = P(M, ~o), tg O~ = P(Mi, ch), z~(M, r = p~/P~ 

(4.2) 

(4.3) 

Here M 1 (M, G 0) is the Mach number at the tip of the angle between the incident and ref lected jumps, 
P2 is the p ressu re  behind the forward jump. Equations {4.2) and (4.3) determine ~ as a function of M. Us-  
ing this function, we may write the equations for the l inear  increments  o f  the pa ramete r s  in the second ap- 
proximation in a compact  form 

AcJ : "{ ( M )  e, Ao) : (k2kMe + t)sin ~ :(M)2o) e , A T --= Ao) - -  e (4 .4)  

In the cur ren t  tube passing through the contour of the centra l  jump, we consider  the flow in front of 
the lat ter  as being one-dimensional .  Hence, 

where 

dy d In y dM ~ (M) (4.5) 

~l (M)  = 1 (k ~- i) T (M) ~1 (M) d In q (M) 
2kM~sin2(o ' ~ ( M ) -  2xr(M) dM 

Here q(M) is the tabulated gas-dynamic  flow function, x(M) is a function charac ter iz ing  the dis t r ibu-  
tion of ]Vfach numbers  along the axis of the jet.  On the basis of (4.4) and (4.5) 

q~,=r + 5 ~ = r  

Substituting the value of r  in the last  of equations (3.3), we find the radius of the centra l  c o m p r e s -  ' 
sion jump 

The determination of the distance x .  to the central  jump is no ser ious problem, since there are some 
quite simple approximations and empir ical  formulas  determining this quantity to a fair accuracy.  In calcu-  
lating the jet pa rame te r s  by the method proposed, we made par t icular  use of the empir ica l  equation of [3]: 

x,=O.8{3.04nO.~ZT+3.t[(2M,~2--t)l/ '--t]--l.l(Ma2--t)!-]- 0.65 [(n--  2) ] / ~ ] ' / ~ - -  t} (n>~ 2) 

We made a number  of calculations relating to the configuration of shock waves for underexpanded 
jets over wide ranges of the original pa rame te r s .  The resul ts  of the calculations were compared  with pub- 
lished data relating to numerica l  calculations and experimental  measuremen t s .  Figure 4 i l lustrates  a com-  
par ison between the calculation based on Eq. (4.6) (broken curve) and experimental  data [3] (continuous 
curve),  taMng 

k ~ t .4 ,  Ma = t .5 ,  '0" a ~ 0 

Analogous resul ts  were obtained for other values of the original pa ramete r s  

(i ~ Ma~<5, 2 ~< n ~< t00). 

Our est imation of the influence of the various possible assumptions as to the radius of the central  
jump showed that the replacement  of this by a straight  jump (fi = 0) introduced an e r r o r  of the order  of 20- 
30% into the value of y , .  The displacement of the point of origin of the suspended jump to the edge of the 
nozzle changed the value of y ,  by 30-40%. However, the grea tes t  e r r o r  was associated with the de termina-  
tion of the initial angle of the suspended jump; an increment  of r to the angle ~~ - a~ changed y ,  by 50-70%. 
These e r r o r s  were capable of occurr ing  all inthe same direction ra ther  than cancelling each other.  
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5. In the foregoing method of determining the principal pa ramete r s  of underexpanded jets,  the com-  
puting formulas contain functions x(M), a (M), and y (M); it is relat ively difficult to calculate the values of 
these from the exact relat ionships.  Experience shows that these functions may nevertheless  be calculated 
to a fair  accuracy by simple approximate equations. 

In the approximate methods of calculating the principal pa ramete r s  of underexpanded jets,  the func- 
tion x(M) is usually regarded  as specified in the form of some analytical relationship. The s impler  the 
form of this relationship, the less  t roublesome is the calculation of the principal jet p a r a m e t e r s .  In the 
range 0 <- x ~ 20 sa t is factory agreement  with numerical  calculations may  be obtained with the following ap- 
proximate formula:  

M=Ma--I-~ 
z - -  ] / - M  a~a~ - -  l A- c 

a = 3.56 + O.Ote ~'~k 

, b =  1 + 0 . 0 2 4 ~  s 9 ~  

c = t.7 --1- O.Oi9e a's~ 

(5.1) 

In o rder  to calculate the ratio of the p re s su res  cr in the configuration of shock waves with one direct  
jump, we recommend the following approximating equation (accuracy of the order  of 1% in the range 2 <- 
M a --- 10) 

2 (  k_~.t k - - i ) [  b c ]  (5.2) = M ~ - -  ~ a -~ 0.t9 (b -- 0.65c) ~- -~- -- 

where 

a~--0.25~- 0.97(k 1)- i.08(k--1) 2 
b = . - 4 . 8 6  (k  - (k  - t ) 2  

c = 1.19--5.85 (k -- t) ~- t2A6 (k -- t) 2 

The function 3/(M) introduced ea r l i e r  may be approximated by a simple formula (accuracy of the order  
of 5% in the range 2 _< M a - 15) 

= --2.99k ~- 2.5 ~- (3.17k -- 2.78) M ~- (O.08k -~- O.i6)M 2 (5.3) 

The use of Eqs. (5.1), (5.2), and (5.3) reduces the calculation of the principal jet pa ramete r s  to a 
ser ies  of quite e lementary  calculat ions.  
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