CALCULATION OF THE PRINCIPAL PARAMETERS
OF FREE SUPERSONIC JETS OF AN IDEAL
COMPRESSIBLE FLUID

V., G. Dulov and G. I. Smirnova

An approximate method of determining the principal parameters of axially symmetrical under-
expanded jets is set out. The results are presented in the form of computing formulas for

the geometrical characteristics of the configuration of the shock waves and the boundaries

of the jet. On the basis of experience with these calculations, some simple approximating
relationships are recommended.

Notation: x,y, rectangular coordinates in the plane of the axial section; p, pressure; p, density; w,
modulus of the velocity; M, Mach number; k, polytropy index; n, degree of wastage of the jet; o, Mach
angle; 4, angle between the velocity vector and the symmetry axis; &, , aperture semiangle of the nozzle in
the outlet section; 6, angle of rotation of the flow in the shock wave; ¢, inclination of the leading edge of
the shock wave to the symmetry axis; w, angle between the incident jump and the velocity vector of the in-
cident flow; K, curvature of the current lines; R, radius of curvature.

The indices denote: a, parameters in the outlet section of the nozzle; °, parameters at the boundary
of the jet; *, parameters in front of the shock-wave branch point; 1, parameters at the vertex of the angle
between the leading edges of the branched jumps; 2, parameters behind the central jump. The dimension-
less gas-dynamic quantities are referred to the corresponding retardation parameters at the outlet from
the nozzle, the quantities with dimensions of velocity to the maximum velocity of steady-state outflow into
a vacuum. The linear quantities are expressed in terms of the radius of the outlet Cross sectlon of the
nozzle.

1. Numerical calculations of the shape of the boundaries in supersonic jets of a nonviscous, nonheat-
conducting gas are laborious and cumbersome. Simple approximate methods of solving this problem are
therefore very much to be sought. One such method was proposed in [1]; it was based on expanding the
solution in series with respect to even powers of the angle ¢ . The expansion is achieved by transforming
to an auxiliary plane of independent variables (pressure-current function) [2]. The initial approximation
then gives a unidimensional solution for flows in a channel with a variable cross-sectional area. In the
next approximation, the isobars (including the isobaric current line) form a family of second-order curves,
However, since the flow closely resembles a plane flow around an obstacle in the neighborhood of the sharp
edge [3] p to distances of the order of the radius of the nozzle from the center of expansion), the generator
of the jet boundary differs little from a straight line up to distances of the same order. We may therefore
employ a twofold analytical specification for the shape of the boundary generator in different regions

_ {1 + (tg9°) z, r<Cz°

VAF¥ Bz +Cz?, z>2° (1)

where A, B, C, x°, 4° are parameters reflecting the influence of the specific conditions of outflow and the
internal structure of the jet. The parameters A, B, C, and x° were defined in [1] in terms of the coordinates
X% ,Yx of the branch point of the shock waves and the pressure p, at the tip of the angle between the incident
and reflected jumps. The following conditions and assumptions also apply:
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a) smooth joining of the sections of the jet boundary gen-
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Fig. 1

b) the active cross section of the flow passing through the
contour of the central jump is regarded as approximately plane
and normal to the symmetry axis; since this section lies fairly
close to the maximal cross section, the direction of the velocity
vector in the former differs little from axial, and the angle ¢ is
therefore regarded as small within this section;

c) allowing for the foregoing approximation, an integral
form is taken for the law of conservation governing the mass of
the gas;

d) it is considered that the curvature of the current lines K
‘and the gradients of the pressure p remain finite within the region
of flow considered and constitute reasonably smooth functions of
distance from the boundary of the jet;

e) in the calculations, these functions are approximated by
a quadratic relationship for p and a linear relationship for K.

In this way we obtain an equation in x° and formulas for the coefficients A, B, and C
2y,,%(p, [ P —1)
T+ g TP, —7,) J=0 a2
A=y,*— Bzr, —Cz,*= (1 + 2°tg %) — Bz* — Cz™?
B =2[(1 4 z°tg9°) tgd° — Cz°}
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where
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Figure 1 illustrates various comparisons between the calculation of the boundary generator based on
Egs. (1.1) and (1.2) (broken lines) and the calculation based on the method of characteristics [3] (continuous
line). In this we tookk =14, M, =1.5,4, =0.

Analogous results were obtained for other values of the original parameters (1 < M, = 3.5,5=n =
25).

2. In an underexpanded jet, the first shock wave, or the suspended jump (curve 2 in Fig. 2), is gen-
erated at a certain distance from the nozzle cutoff, at the point O;, at which the characteristics of the
second family 3 reflected from the boundary of the jet 1 first intersect. The coordinates of this point may
easily be expressed in terms of the radius of curvature R° of the initial element of the jet boundary on the
assumption that the characteristics are practically linear up to the intersection point,

A simple approximate formula may be obtained for R° from the equation of motion projected on the
normal to the current line, allowing for the continuity equation
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Here R is the local radius of curvature, and s and n are the distances along the current line and the
normal to the latter. Since pw = const along the boundary, from the foregoing equations we obtain

ap kL) 1 dpw sin 9

pw’__sinﬁ dap
E =y %

The derivative dp/d# is calculated along the normal to the boundary, The change in pressure in the
elementary compression wave reflected from the boundary may be approximately calculated from the plane
theory of small perturbations, The flow in the neighborhood of the boundary is vortex-free; hence,

~ pwz R
dp == 90

Thus,

oY1 _ g
sin 9° sin §°
Here «° is the Mach angle, and 4 ° is the initial inclination of the boundary generator to the axis of the
jet. The approximate formula (2.1) gives entirely satisfactory agreement with the results of exact calcula-
tions [3]. According to Eq. (2.1) and Fig. 2, the coordinates of the point of generation of the suspended jump
are given by

_ cosaf ° cosa’ . o o
To = Grge 008 (¥° —a°), yﬂ:1+s’iﬁ‘;sm(ﬁ —a°)

In the neighborhood of the triple point, the parameters are very sensitive to any change in the initial
inclination of the suspended jump to the axis of the jet ¢°. The arc of the suspended jump is of a consider-
able extent; hence even small errors in determining the angle ¢° may give rise to serious errors at the end
of this arc. Let us calculate the increment in the characteristic angle (¢ — @) on moving along the latter
characteristic, descending from the sharp edge of the nozzle. In the neighborhood of this edge, the deriva-
tives of the gas-dynamic quantities measured along the characteristics of the first family in the region of
the wave of rarefaction are, in absolute magnitude, far greater than the same quantities in the direction of
the characteristics of the second family. Hence the compatibility relationship along the characteristics of
the first family is approximately satisfied in all directions, in the same form as in the case of plane flows

cos® o .
dﬁ-{-mdamo 2.2)

This relationship holds, in particular, along the initial element of the boundary characteristic, on

which the exact relationship for the characteristics of the second family is satisfied

cos?o s f ’
dﬁ_ll_zmda—smasmﬁdl =0 (2.3)

Here d! is an element of displacement along the characteristic in question. It follows from (2.2) and
(2.3) that

d{(—a) k41 sinasind
al 4 cos?a,

The latter formula enables us to introduce a linear correction to the angle

c|)o =9 — o’ [d(ﬁ“;l—a)]]"lu =\')°—-ot°—}—kj:1tgoc°
Calculations showed that due allowance for this correction constituted one of the main requirements
in increasing the accuracy of determination of the parameters governing the configuration of the shock

waves in the jet.

3, If, for the sake of clarity, the boundary of the jet is likened to a solid wall, then the suspended
jump may be treated as a shock wave arising when a supersonic flow passes around a concave surface. The
greater the Mach number in the "incident" flow, the more closely does this wave approach the surface around
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which the flow is occurring. On this basis, certain authors have used the
limiting hypersonic approximation, assuming that the suspended jump co-
incides with the boundary of the jet. For large but finite Mach numbers
in front of the suspended jump, the generator of the latter differs little in
shape from the line forming the boundary, and may be geometrically de-
rived from this by means of a relatively slight deformation, This de-
formation may be approximately carried out analytically by changing
several parameters in the structural relationship defining the shape of
the jet boundary.

Fig. 3
Let us suppose that the arc of the boundary generator is given by
the equation of a three-parameter curve of form
J
Y
4//’1‘ fz, y, a, b, ) =0 3.1)
Y4 P
1 /." » where a , b, ¢ are parameters determined from the conditions character-
7 /f ! " izing the jet boundary. Then, according to the foregoing arguments, the
* /’ : equation of the generator giving the surface of the leading edge of the sus-
0/' _ I N pended jump takes the same form (3.1), while the parameters a, b, ¢ may
L be found with due allowance for the properties of this jump, i.e., the curve
Fig. 4 in question should pass through two points with coordinates (x;,y,;) and

(Xx,¥x); the inclinations of the jump to the symmetry axis at these points,
respectively, equal ¢ and ¢, . Hence,

f(xﬂf yD? a, b7 C) = 01 f($*, y*1 a, by C) = 0
fx(xOv Yor @, b, C) - fy(l'o, Yo, @, b, c) tg ¢ = 0 (3.2)
fe@sr Ys @ b, © F-fy(Tsr s @, B, c) tg 9, =0

In accordance with (1.1) we may, in particular, consider that

fle,y,a,b,cy=y—Va+bz+cx®=0

From Eqgs. (3.2) we then find
a = glgt — bzy — ¢t = yu® — by — 0z}
b= (24— 20)Mys® — 1% + @ +74) W 189" +yx tE Pyl

e = — (z, — o) (Wo 1 9° 4 ys 18 Pu) (3.3)
tg @p = [y (T — zo)l? Zy — 2o)yo 18 ¢° — ys® -y’

Equations (3.3) contain the unknown parameters x, and y, . We shall now discuss the problem of cal-
culating these.

4. In a jet flow there is always a tendency for the flow to even out in the direction of the jet axis.
Even behind the first system of jumps, the inclinations of the velocity vectors to the axis of the jet become
very slight. This property also applies to the contact discontinuity descending from the contour of the cen-
tral jump, To a first approximation this jump may be considered as the first jump of compression. Then
the initial inclination of the contact discontinuity equals zero, while the flow may be regarded as unidimen-
sional in front of the leading edge of the jump.

As a second approximation we set up the following scheme (Fig. 3). The velocity vector w in front of
the triple point C makes a small angle & with the symmetry axis; the angle of the incident jump 1 with re-
spect to this vector changes by a small amount Aw; the central jump 3 curves, while the initial element of
the contact discontinuity remains parallel to the axis. Hence, in the second approximation, &€ — 64 + 6, =0,
where 6, and 6, are the angles of rotation of the flow in the incident and reflected jumps 1 and 2, respective-

ly.
Let us make use of the formula for the angle of rotation of the flux in the shock wave

. s—1 2 M aTh » _pn
tge_i—i—kMz—a[k—{—is+(k-—-1)/(lc+1) 1} = P(M, 0), d—p* 4.1)
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Here py is the pressure at the tip of the angle between the leading edges of the branched jumps 1 and
2, px is the pressure in front of the branch point, Let 6, and o, be the values of § and ¢ in the first ap-
proximation. We introduce the function y in the following form:

_ dtgB  dtghe\t . (4.2)
7= [cos2 60< T T de )]
tg 6, = P(M, o,), tg0, = P(My, o), 6, (M, 0o) = Pa/Py (4.3)

Here M; (M, ¢ ;) is the Mach number at the tip of the angle between the incident and reflected jumps,
p, is the pressure behind the forward jump. Equations (4.2) and (4.3) determine y as a function of M, Us-
ing this function, we may write the equations for the linear increments of the parameters in the second ap-
proximation in a compact form

_ _kAEhrDe -
-As_fr(M)s, Ao =Somams—, Ap=Av—e (4.4)

In the current tube passing through the contour of the central jump, we consider the flow in front of
the latter as being one-dimensional. Hence,

dy _dlnydM __ B(M) (4.5)

dx = am dz ¥ T qanY

g

where

- (k1) v (M) (M) dlngM
M) =1 ——grsmie P =900 nd?ll()

Here q(M) is the tabulated gas-dynamic flow function, x(M) is a function characterizing the distribu-
tion of Mach numbers along the axis of the jet. On the basis of (4.4) and (4.5)

¢x =0 + A =0 — Py,

Substituting the value of ¢ in the last of equations (3.3), we find the radius of the central compres-'
sion jump

Y= % (1 — B%\)—l{qw* —z0)tg? 04y, (1 — Bz(;"o;;z°> X Yo+ (Zy — o) tZ cp")]ll2 — (2, —xo) tg ,03} {4.6)

The determination of the distance xx to the central jump is no serious problem, since there are some
quite simple approximations and empirical formulas determining this quantity to a fair accuracy. In calcu-
lating the jet parameters by the method proposed, we made particular use of the empirical equation of [3]:

Ty ==0.8{3.04n087 1 3.1 [2M 2 — 1) — 1] — 1A (M2 —1), +0.65[(n —2) Y M 2 —1]"—1} (»>2)

We made a number of calculations relating to the configuration of shock waves for underexpanded
jets over wide ranges of the original parameters, The results of the calculations were compared with pub-
lished data relating to numerical calculations and experimental measurements, Figure 4 illustrates a com-
parison between the calculation based on Eq. (4.6) (broken curve) and experimental data [3] (continuous
curve), taking
kF=1.4, My=1.5, 8, =0

Analogous results were obtained for other values of the original parameters

1 < Mg <5, 2< n<100).

Our estimation of the influence of the various possible assumptions as to the radius of the central
jump showed that the replacement of this by a straight jump (8 = 0) introduced an error of the order of 20-
30% into the value of yx. The displacement of the point of origin of the suspended jump to the edge of the
nozzle changed the value of yx by 30-40%. However, the greatest error was associated with the determina-
tion of the initial angle of the suspended jump; an increment of ¢° to the angle #° — @° changed y, by 50-70%.
These errors were capable of occurring all inthe same direction rather than cancelling each other.
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5. In the foregoing method of determining the principal parameters of underexpanded jets, the com-
puting formulas contain functions x(M), ¢ M), and y (M); it is relatively difficult to calculate the values of
these from the exact relationships., Experience shows that these functions may nevertheless be calculated
to a fair accuracy by simple approximate equations.

In the approximate methods of calculating the principal parameters of underexpanded jets, the func-
tion x(M) is usually regarded as specified in the form of some analytical relationship. The simpler the
form of this relationship, the less troublesome is the calculation of the principal jet parameters. In the
range 0 < x =< 20 satisfactory agreement with numerical calculations may be obtained with the following ap-
proximate formula:

a = 3.56 + 0.01£277¥
, b1 0,024 (5.1)
¢ == 1.7+ 0.019¢43%

alz—YMFI—=1+b
s—YME—1+¢

M=M,—1+

In order to calculate the ratio of the pressures ¢ in the configuration of shock waves with one direct
jump, we recommend the following approximating equation (accuracy of the order of 1% in the range 2 =<
M, = 10)

2k kE—1 b
6=(m MZ-—_IC_:T> [a+0.19 (b —0.65c) + 3 —M%] (5.2)
where

@ == —0.25 + 0.97 (k — 1) — 1.08 (& — 1)?
b= 1.74—4.86 (k — 1) - 8.24 (k — 1)?
¢ = 1.19—5.85 (k — 1) + 12.16 (k — 1)?

The function y (M) introduced earlier may be approximated by a simple formula (accuracy of the order
of 5% in the range 2 = M, = 15)

¥ = —2.99% + 2.5 + (3.17k — 2.78) M -+ (0.08k + 0.16)M? (5.3)

The use of Egs. (5.1), (5.2), and (5.3) reduces the calculation of the principal jet parameters to a
series of quite elementary calculations.
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